Game B
Note: This page, just like its primary subject, is a work-in-perpetual-progress. Perhaps there is detectable structure, but don’t treat it or any ideas as set in stone. There is no one definition of Game B, but here's an attempt to summarize Game B by James Allen.
Game~B is a memetic tag that aggregates a myriad of visions, projects and experiments that model potential future civilisational forms. The flag on the hill for Game~B is an anti-fragile, scalable, increasingly omni-win-win civilisation. This is distinct from our current rivalrous Game A civilisation that is replete with destructive externalities and power asymmetries that produce existential risk. Yet Game~B is not a prescriptive ideology (or an ideology at all): while the eyes of Game~B players may be fixed on the same flag, the hills are multitudes and the flag sits atop each, and no player individually is equipped to map a route in advance.
Rather, Game~B players gather together to feel their way up each hill with their toes, sensing for the loamy untrodden ground beneath them, slowly inching forward, listening for signals from one another, adjusting at each step to orient themselves toward the flag that is barely visible. In that way, just like a game, Game~B describes a modus operandi as much as it does a goal, although for now, the former can be brought into sharper focus than the latter.
Game~B players are already everywhere, and Game~B is already emerging. #gameb is merely a means to make the organism self-aware, to show its players that they are already in community.
The evolutionary backdrop of Game B
Our universe selects for coherence and emergence
“How do we get fundamentally new things out of relationships of things where that didn’t exist before? Emergence is the closest thing to magic that’s actually a scientifically admissible term. ”
- Daniel Schmachtenberger
Coherence occurs when different parts come together and create something greater. The difference is emergence.
Coherence enhances evolutionary fitness because emergence may create properties that offer some evolutionary advantage. Things can come together in various ways. The ones that came together and offered the most advantages are selected for and are what drives the arrow of evolution.
In complexity theory, evolution is defined as more elegantly ordered complexity.
From the big bang to stars to chemicals to planets to single-cell organisms to multi-cell organisms to humans, the universe has selected for increasing elegantly ordered complexity.
On the opposite side, defection that occurs when parts are not aligned with the whole is selected against. An example is the tragedy of the commons, whereby a person exploits a common resource for their own gain at the expense of the whole instead of cooperating to ensure the resource is used sustainably. The result is that it incentivises others to also exploit the resource, thereby defecting on the global optimum, and thereby rendering the system eventually self-terminating. So, avoidance of defection in favour of coherence also enhances evolutionary fitness.
As Big History suggests, new complexity results from having both the proper ingredients and goldilocks conditions. As an example, after the universe created stars, the universe consisted of only hydrogen and helium. When giant stars ran out of hydrogen, they collapsed and with high enough temperatures, the fusion of helium nuclei created many different elements that form our periodic table. This brought increased complexity that could lead to planets.
Our human advantage is in collective intelligence
Skipping forward, the evolution of humans was a big milestone in the history of the universe. For the first time, something had the ability to contemplate its existence and consciously change the future.
Anatomically modern humans evolved about 150,000 years ago. As Jordan Hall mentions, the evolution of the human needed many different pieces to come together. They include:
- Humans beginning to grow larger and larger crania
- Significant increases of the gestation period
- Increased male attention in parenting
- Grandmothers living long enough to provide resources and knowledge for support, among others
According to The Late Upper Paleolithic Model, humans were not cognitively or behaviorally "modern" until around 50,000 years ago. Jordan Hall characterizes this as the emergence of our collective intelligence toolkit including abstract thinking, planning depth, symbolic behavior, among others.
This represented what Yuval Harari called the Cognitive Revolution. Humans became the first species that could learn collectively and not just as individuals. Collective learning meant, with each generation, ideas and knowledge accumulated and more information was retained than lost, allowing humans to become more and more powerful.
So, our (human) evolutionary advantage was our ability to collectively learn and collaborate. It is encoded in our genes.
Humans found coherence under the Dunbar number
With this new collective intelligence toolkit, groups of humans gathered at the band level numbering between 5 to 150. These groups were meta-stable due to the high level of coherence and ability to police defection. Robin Dunbar found a correlation between primate brain size and average social group size and proposed that for humans, 150 appears to be the limit of our neurological capacities to model every other member and all of the complexities of relationships. At 150, Dunbar speculated that 42% of the groups time would need to be devoted to social grooming.
As Jim Rutt hypothesizes, a band that could have coherence at 150 had a very substantial advantage over a band that could only have coherence at 80, so there was a group selection advantage. There was a ratchet for more neocortex until the limit of the pelvic girdle in the human female was reached and that was how he converged to the Dunbar number of 150.
As examples, Dunbar found 150 as the estimated size of a Neolithic farming village; 150 as the splitting point of Hutterite settlements; 200 as the upper bound on the number of academics in a discipline's sub-specialisation. As bands approach 150, they tended to fractionate into two units.
With high degrees of coherence under 150, we very quickly became asymmetric with the rest of nature and began to shape nature for our own needs. This allowed us to spread, survive, and thrive in most environments. We quickly became the peak predator. Ever since this Cognitive Revolution, we have been able to change our behaviour quickly, transmitting new behaviours to future generations without any need for genetic or environmental changes. So, the speed of evolution became dominated by cultural evolution rather than biological evolution.
Unfortunately, even with new (digital) technology increasing social connectivity across the globe, research still indicates that humans are somewhat restricted by the Dunbar number in the number of stable social relationships an individual can maintain. A study of Twitter activity by Gonçalves, Perra and Vespignani in 2011 validated the Dunbar threshold insofar as biological and cognitive limits still apply in the current attention economy.
How did we lose this coherence?
Agriculture allowed for larger population
We quickly spread and dominated every niche. By 11,000 years ago, the population grew to 6 - 8M, which was about the largest forager population that the Earth can support.
Agriculture arose independently across the world starting in Mesopotamia, 11,000 years ago. This was likely because:
- Global temperature rose after the last ice age
- We gained more understanding of plants and animals
- Human communities became more dense, and there was increasing competition for resources
Farming allowed us to support a larger population with a much smaller land area than foraging. As we began to organize beyond the Dunbar number, the larger population meant there was more space open for defection.
Enter Game A
In the intimate context of hunter-gatherer life, defection would be difficult. As societies became more complex, and people were interacting with people that they did not know, the civilization toolkit emerged to police defection.
Introduction of scarcity
While we were foragers, we were a part of the ecology and lived in relationship with the natural world. With the advent of agriculture, we started to shape the environment for our own needs. Farming also allowed us to produce enough food so that there was surplus. As Daniel Schmachtenberger notes, this created the concept of (property) ownership since now there was something to own. Ironically, this also created the concept of scarcity, and hence created the beginning of economics, and how to divide up scarce resources amongst the population.
Game A’s primary problems
Game A is almost everything that humans have been doing to design our world, especially in the last 10,000 years, to coordinate beyond the Dunbar number.
Game A, fundamentally, is about being able to solve these three primary problems:
- Resource production - coordinate people together such that they can extract resources from nature and provide for the well-being of the group
- Interior defection - survive internal defection as the population begins to grow well beyond the Dunbar number.
- Exterior competition - survive and be victorious in competition with other human groups
So, Game A is primarily characterized by scarcity and thus rivalrous or win-lose dynamics. How do we increase our resources production? How do we divide up the scarce resources? How do we compete with other groups of people?
Civilization became the toolkit to solve these problems. Civilisation is characterised by the continued effort to police local defection against the global optimum, but through a growing dependence on formal institutions and less on interpersonal relationships (although this still continued to an extent).
Game A’s increasing complexity
Chiefdoms
After agriculture first spread across a region, with enough surplus, chiefdoms tend to follow. Anthropologist Robert Carneiro defines a chiefdom as “an autonomous political unit comprising a number of villages or communities under the permanent control of a paramount chief.” The exception was Papua New Guinea probably because the root crops could not be stored and agriculture was not quite productive enough to generate surplus. Chiefdoms, the scholar Randolph Widmer has written, “were at various times the most common form of society found throughout Europe, Africa, the Americas, Melanesia, Polynesia, the Near East, and Asia.”
Agrarian civilizations
Chiefdoms sustained the basic trend toward larger and more complex social organization. The chiefdoms’ villages evolved into something more like towns, then city-states, then multi-city states, and then civilizations.
As farming technologies became more complex and more productive, they eventually allowed for the creation of larger, more populous and more complex societies. These agrarian civilizations appeared all over the world. They are usually divided into 4 world zones: The Americas, Afro-Eurasia, Australasia, and the Pacific Island societies. Although every civilization was different, they had many things in common. They all had big cities. These cities had monumental architectures like temples, pyramids and palaces. They also had rulers, hierarchies, tax systems, armies and a large population of peasant farmers to support the civilization.
Game A's tools
With scarcity and non-rivalrous(?) dynamics in Game A comes the power to influence and control resources.
Some tools used by Game A to do this and solve the three problems of resource production, interior defection and external competition are:
- Formal Roles and Hierarchy
- Formal Narrative / Religion
- Armies / Police
- Formal Law
Formal Roles and Hierarchy
With chiefdoms, for the first time there are groups of people under the permanent control of a paramount chief. A chief’s status is usually based on kinship, so it is inherited or ascribed instead of achieved status like leaders at the band level.
Chiefdoms are characterized by centralization of authority and pervasive inequality. With chiefdoms, for the first time, there were at least two inherited social classes. Farmers extract resources from the environment, and there was a ruling elite above them that extracts resources from the farmers.
Through this renk-seeking dynamic, the ruling elite could accumulate surplus from the labor of other people and not their own. As Daniel Schmatcherberger says, this was the beginning of a new multiplicative economy.
In civilizations, specialists began to appear like potters, merchants, priests and soldiers. These were formal roles that people had. There were a few rich, politically powerful people and many more comparatively poor commoners who had little political influence and almost no possibility of acquiring it. As single-city kingdoms became multi-city empires with vast territories, the hierarchy became more rigid.
Sacredness of the ruling elite
Chiefs had demigod status and possessed religious authority. They usually became the representative to the gods, and performed rituals that only they could perform.
Observed over the past few centuries, chiefdoms have gone to great lengths to underscore their chiefliness. Many forms of chiefly self-advertisement are enduring such as monumental architecture. These include the huge mounds built in North America as tombs for past chiefs, pyramid-like temples on Tahiti, and even the giant stone heads on Easter Island.
Similarly, in agrarian civilizations, the ruler commingly(?) became a god-king with absolute authority. The Pharaohs of Egypt are a prime example of this. They were thought to be not just mortals but god-kings. As living gods, their authority was absolute. They also had monumental architecture like huge pyramids.
Formal Narrative / Social Norms / Religion
Any large-scale human cooperation is rooted in common shared myths. The crucial historical role of religion has been to give superhuman legitimacy to structures of states. Religion asserts that the laws are not the result of human fallibility, but are ordained by an absolute and indisputable authority. This helps push them beyond challenge and thus ensuring social stability. As Yuval Harari describes, “The imagined order is inter-subjective.” It exists in the shared imagination of everyone.
Armies / Police
As Chris Boehm suggests, it was the development of weaponry that allowed two betas to kill an alpha and thus one alpha couldn't dominate and the band level was essentially egalitarian. With the extra resources, Chiefdoms could assemble military forces and break out of anti-hierarchical operating system that we had at the band level.
In 1970, the American anthropologist Robert Carneiro developed the coercive theory of state formation that suggested increasing population pressure in early agricultural societies would have resulted in intensive competition with other societies for scarce resources such as land, water, salt, and wood. This would have triggered wars of conquest. Centralized governments would have developed to mobilize and direct armies. According to Carneiro, the armies would continue to exist to control conquered peoples, collect tribute, and allocate resources.
Formal Laws
Written laws came into existence after writing was invented. Writing allowed these laws to be easily shared and inscribed. As an example, the Code of Hammurabi of 1776BC presented Hammurabi as a just king and served as the basis for a more uniform legal system across the Babylonian Empire. It asserted that Babylonian social order is rooted in universal principles of justice, dictated by the gods. According to the code, people are divided into two genders and three classes. With this collection of laws and consequences and the threat of force, social order was created that was clear and enforced.
The Industrial Revolution creates a global society
As the Persians, Romans, and Mongols civilizations expanded and developed long-distance trade routes to expand their regional influence. New transportation and navigational technologies would connect all world zones.
The Agricultural Revolution allowed humans to better harness the energy from the sun that gets captured by plants. Animals like horses and oxen can pull carts and carry burdens, which is 10 times more than human could do.
The next big revolution was the Industrial Revolution and it created the world we live in today. The industrial revolution is arguably the primary cause of the dramatic trajectory change in human welfare that began 1800 - 1870. As Luke Muehlhasuer write, “Everything was awful for a very long time, and then the industrial revolution happened.”
As the diagram shows above, all 5 measures of well-being dramatically increased after the Industrial Revolution:
- Physical health, as measured by life expectancy at birth.
- Economic well-being, as measured by GDP per capita (PPP) and percent of people living in extreme poverty.
- Energy capture, in kilocalories per person per day.
- Technological empowerment, as measured by war-making capacity.
- Political freedom to live the kind of life one wants to live, as measured by percent of people living in a democracy.
Before the Industrial Revolution, in the 1400s, the world was still divided into 4 isolated world zones: the Americas, Australasia, the Pacific, and Afro-Eurasia. The European exploration eventually united all four world zones and we became a global species with a huge global exchange network. Technologies, innovations, ideas, goods and belief systems could be shared across the world.
The Industrial Revolution’s large impact may have been from these 4 factors:
Cheap fossil fuels
We found new sources of energy: coal, oil and natural gas. These fossil fuels stored energy from the sun for hundreds of millions of years. We learned how to use this energy to power engines of all kinds.
Wood was the main source of energy in the pre-Industrial world. For a given amount of heat, coal required much less labour to mine than cutting wood, and coal was much more abundant than wood, supplies of which were becoming scarce.
Improvements to the steam engine
Fundamental improvements to the steam engine were important for the Industrial Revolution. Changes by James Watt that saved 75% of coal costs and allowed steam engines to be used in various industries. The steam engines could use the untapped sources of coal to generate cheap energy and mechanically move large loads. By the early 19th century, steam engines were being used for industrial-scale production. The innovations of railways and steamships revolutionize transportation as well.
Increases in commerce and global markets
In agrarian civilizations, elites tended to extract resources through the threat of force. However, there was another class of merchants and artisans who got money through competitive markets. To succeed, they needed to be innovative with their goods and services. So, in the areas of commerce, there were many ideas exchanges and new innovations generated, and competitive markets flourished. By 1500, expanding global networks of exchange increased the importance of commerce and markets everywhere.
Science Revolution brought growth in knowledge
Science differed from previous traditions of knowledge by admitting ignorance, testing hypotheses and acquiring new knowledge to develop new technologies. As Francis Bacon argued “knowledge is power.” Science is particularly useful tool to understand causal relationships.
Until the Scientific Revolution, most human cultures did not believe in progress and had a static view of the world. During the last 5 centuries, we increasingly believed that we could increase our capabilities by investing in scientific research. This began a strong feedback loop where the more resources that governments and people put into the science, the more knowledge and power they got.
Game A’s trends of emergence
Looking back from the start of agriculture, there have been some trends of emergence through innovation to help understand how we got to the modern era:
- Human history has seen improvements and innovation in transport and processing of energy, matter and information.
- We have a positive feedback loop: more population leads to more emergence and innovations; more innovations allows for more population.
- For a rivalrous dynamic, societies must adopt new innovations or get conquered by more advanced societies.
- New innovations often redistribute power within societies
Human history has seen improvements and innovation in transport and processing of energy, matter and information.
Energy
As we moved from hunter-gatherer to agricultural civilization to modern civilizations, the amount of energy used has continued to increase. As mentioned before, we have moved from human power to animal power to mechanical power. Today, we are also able to harness energy from the environment (sun, water, wind) and nuclear, which is the same way stars generate energy. As Daniel Schmachtenberger says, “we now have the power of the gods.”
Matter
With the increase in energy, we could move matter faster and easier. Our transportation technologies have moved from animal and horses to trains and ships. Today, we could almost send and receive anything anywhere in days. Furthermore, we have the ability to fly and send people into space.
Information
Many information technologies have dramatically increased human’s ability to coordinate. Two noteworthy innovations were writing and the printing press. First, writing helped store knowledge easily across century. Second, the printing press drastically reduced the cost of printing books and spreading knowledge. The printing press helped overhaul religious thought and ushered in both the scientific and industrial revolutions.
Before the 20th century, information spread through our transportation technologies like trains and ships. In the 20th century, this changed with the invention of the telegraph, telephone, computer and internet that allowed us to connect with anyone in the world in seconds. The distance between people has continued to decrease over time.
With this decreased distance, people with common interests can come together. This has lead to tribalism that fragments the population (ex. dissolution of Yugoslavia). On the other side, globalization of economics and culture integrates the world. This represents a tension between fragmentation and integration.
Furthermore, with the information revolution, information has become easily coded in bits with 1s and 0s and copied with very low cost. Instead of atoms, these bits have very little weight and travel close to the speed of light.
Other social and information processing technologies include the invention of money and markets. Money added liquidity to exchanges of goods. Markets brought together many buyers and sellers and used price to efficiently value goods and services.
We have a positive feedback loop: more population leads to more emergence and innovations; more innovations allows for more population.
With the agricultural revolution and industrial revolutions, human population has dramatically increased. With the industrial revolution, the global population has grown from 1 billion in 1800 to 7.6 billion in 2018. There is fear that the exponential population growth is putting strain on natural resources, food supplies, housing, etc.
Additional population provides more nodes for emergence and innovation. The potential for collaboration and interactions grows exponentially with the number of people.
For a rivalrous dynamic, societies must adopt new innovations or get conquered by more advanced societies.
"Selfishness beats altruism within groups, but altruistic groups beat selfish groups. The rest is commentary."
-David Sloan
Throughout history, we have seen the more advanced civilization generally conquer the less advanced civilizations. This is how the European countries colonized most of the world.
This means that because of the rivalrous dynamics, similar to evolution, the weaker civilizations will not last and the ones with greater coherence, emergence and innovations will continue to spread. With the pressure of rivalry, the arrow of complexity continues to increase through this mechanism.
New innovations often redistribute power within societies
Innovations often expand the number of people who profit from the system and so wield power within it. There is a Hobson "take it or leave it" choice for governing elite: accept valuable technologies that may erode power or resist them that you get overrun by a more advanced group of people.
The medieval historian Joseph Strayer once noted “an interesting problem in the history of civilization. If there is steady progress anywhere, it is in the field of technology, and yet this kind of progress seems to have little connection with the stability of society.”
Elites dislike power shifts. For example, the instinct of feudal lords was to exploit the emerging class of merchants. But it didn't take long for the merchants to unite into guilds and demand freedoms. Increasingly towns won the right to self-government as Feudal lords were in competition and soon realized that local prosperity was good for them and that prosperity required a bit of freedom.
A more recent example, the legacy of capitalism’s growing power can be seen as democracy is widespread and greater amounst of people have more representation and voting rights.
Technology, time and again, has changed the balance of power within society. And people tend not to surrender power gracefully. This basic tension between the aggrandizing instincts of powerful people versus the decentralizing tendencies of technology, especially information technology has played out again and again. As trend throughout history has generally that the power of the individual has continually increased.
Where are we today?
Our quality of life has never been higher
As we saw in the last section, for the first time, we have a globally connected human society. We have billions of people who can instantly communicate with each other. We generate enormous amounts of energy. We understand quantum mechanics to relativity. We have markets that are able to solve most of our needs efficiently. Medical advancements have increased average life expectancy from 32 years in 1900 to 71 years in 2018.
Here are some other metrics that show the progress we have made, 200 years ago vs 2015:
- 94% vs 10% of people lived in extreme poverty
- 83% vs 14% did not have a basic education
- 88% vs 15% were not able to read
- 99% vs 44% did not live in a democracy
- 100% vs 14% were not vaccinated
- 43% vs 4% of kids died before they were 5
Now, there are many more metrics to look at. And we still have a lot more progress to be made. But things are so much better.
The crises produced by Game A
"If we are scaling toward the power of gods, then we have to have the wisdom and the love of gods, or we self destruct."
-Daniel Schmachtenberger
For the first time, we are facing threats to all of humanity
With all this progress, we have become an interconnected world that is venturing to collapse.
Here are 4 big problems:
- Exponential tech - We have exponential tech in a win-lose world that poses an existential risk
- Environment - We are now dramatically affecting our planet
- Fragility - We are living in a fragile interconnected world
- Poorer sensemaking - There is a war on sensemaking
We have exponential tech in a win-lose world that poses an existential risk
For the first time, we have technologies that could wipe out all of humanity. This started with nuclear in the 1940s. Other coming technologies that improve exponentially are AI, synbio, nanotech, etc. If technological development continues, small groups to individuals could have the capabilities to devastate all of civilization. Nick Bostrom calls this the Vulnerable World Hypothesis in his 2018 working paper.
Game A is about scarcity and thus win-lose dynamics. If we people disagreed, they would fight it out. Today, that fight could produce catastrophic damage. Imagine someone with a gun or bomb that could blow up a whole block now had the capability to blow up a whole country because they are unhappy. This means if there are agents that are misaligned with the whole, there could be disastrous consequences.
In Game A, it was important to build up offensive capability or defensive capability or be killed. This is prisoner’s dilemma or multi-polar trap, where the equilibrium that is good for the agents is not good for the whole. We have gone from stone tools to guns to weapons of mass destruction. With exponential tech, it is now lose-lose for everyone because any war may blow up everything.
For example, right now there is Arms race between China, US, Russia to develop autonomous weaponry. They may signed “Pledges” to not build the weaponry but they could defect or sign it and do it in secret. As an example, China indicated in April 2018 its support of ban on battlefield use of autonomous weapons and then on the same day released plans for an intelligence swarm designs. These win-lose dynamics also incentives speed and the need to cut corners while developing technologies.
Why does our current state that pushes for individualism not work?
The invisible hand, introduced by the 18th-century Scottish philosopher and economist Adam Smith, that characterizes the mechanisms through which beneficial social and economic outcomes may arise from the accumulated self-interested actions of individuals, none of whom intends to bring about such outcomes.
This is a bottom-up approach that provides more information processing that a top-down approach. It doesn’t work because there will be misaligned of agents to the whole. Specifically with the bottom-up approach, there could be many situations where there are perverse incentives that are detrimental to the whole.
Here are some examples that Daniel Schmachtenberger provides:
- A for-profit military industrial complex as one of the largest blocks of the global economy. Peace would mean bankruptcy. Ongoing war and threat of war to continually manage is optimal. War for any cause is profitable. Military contractors have massive lobbying resources, and major shareholders in decision making positions of military and government.
- A for-profit health care system that makes no money on healthy people, makes a little on permanent cures, makes the most on long term symptom management
- Information as competitive advantage, incentivizing hiding information, protecting it as intellectual property to keep it from being useful to others, and actively creating and promoting disinformation.
This individualism has pushed people to create their own niches through niche construction to benefit themselves. Furthermore, there is a lot of strategic and planning that focuses on the narrow goals of the individuals which may not taking into consideration the whole.
We are now dramatically affecting our planet
We are using up non-renewable resources
With exponential technology, we could do enormous damage very quickly. An example is long-range fishing that could deplete the oceans of fish very quickly. Our current system incentives us to extract the dwindling resources faster than they can be replenished because a fish is worth nothing in the ocean, but worth something if caught.
Furthermore, our progress has also been dependent on non-renewable resources like oil that have taken its toll on the environment. Like a kid addicted to cigarettes, it is hard to take that away because we have become so dependent on it.
Open loops are affecting our planet
Currently, we have an “open loop” system where there are externalities that are not factored into the system. We have a linear materials / consumption / extraction system where we extract, use one time and then dispose. This accumulates waste and depletes natural resources.
Our current open-loop economic systems that don’t account for the cost to the environment have led to sea level rises, desertification, wildfires, ocean acidification, pollution, soil degradation, extreme weather, species extinction that is at 1000x normal rate, a 76% decline in insect biomass, and many more issues.
We are reaching the carrying capacity of the Earth
With the exponential population growth, many believe our ecological footprint has exceeded the Earth’s biocapacity. If we don’t change our current trajectory, we could be on our way to a Malthusian catastrophe where population growth outpaces agricultural production.
We are living in a fragile interconnected world
Here's the full list of the civilisations displayed above.
As seen above, every civilization has collapsed. Collapse can be defined as a rapid and enduring loss of population, identity and socio-economic complexity. Because we are now a global civilization, a collapse could be catastrophic for all of humanity.
As Luke Kemp wrote, there are many reasons why a civilization could collapse including:
- Climate change - When climate changes, there can be cascading effect. The collapse of the Anasazi, the Tiwanaku civilisation, the Akkadians, the Mayan, the Roman Empire, and many others have all coincided with abrupt climatic changes, usually droughts.
- Environmental degradation - Societies could collapse when they overshoot the environment’s carrying capacity. Jared Diamond’s Collapse debately argues that this was the fate of Easter Island
- External shocks - Also known as the “four horsemen”: war, natural disasters, famine and plagues. For example, smallpox arriving in the Americas was devastating and a reason why Aztec and Incas were defeated.
- Inequality - With technology, there are more winner take all dynamics, and wealth of the top 1% is growing in the US since 1980. Inequality causes social distress, which is arguably one of the reasons why Trump got elected.
- Red Queen Effect - Statistical analysis on empires suggests that collapse is random and independent of age. An explanation is “Red Queen Effect”: if species are constantly fighting for survival in a changing environment with numerous competitors, there is consistent probability of extinction.
- Complexity - Collapse expert and historian Joseph Tainter has proposed that societies eventually collapse under the weight of their own accumulated complexity. We describe further below.
Dave Snowden created the Cynefin framework to explain the difference between complicated and complex.
- Complicated - In principle can be taken apart and put back together again. Cause and effect are easy to follow
- Complex - Cannot be taken apart and put together again because the phase space in time is changing and dynamic. In complex systems, it is hard to determine cause and effect relationships
Complicated systems tend toward entropy. Complex systems tend toward emergence. Part of the problem we’re facing is that we’ve been for a long time trying to manage complex systems with complicated structures. And as it has failures and creates externalities, the complicated system becomes more complicated until the point where that complicated system becomes so expensive to keep going that it starts to collapse.
Here is an example: Because of the difficulty of policing defection behavior, you create formal rules.The laws are endeavoring to manage the complex reality of human beings. As this happens, what you’ll ultimately find is that as the complex system just mutates and changes and new possibilities emerge, the complicated system actually has to become more complicated.
Today, we solve most problems by using complicated systems to manage the complex. Science has been a great tool to determine cause and effect for complicated systems. This is why we have eradicated many infectious diseases because the disease are clearly identifiable and an accurate diagnostic tool should exist. On the other hand, non-communicable diseases like diabetes, cancer and cardiovascular diseases are much harder to reduce because they are complex.
As Tainter hypothesized in his book “The Collapse of Complex Societies”, societies eventually collapse under the weight of their own accumulated complexity. Take oil as an example. First, societies starts with the lowest hanging fruit. For a little while, there is huge boon of surplus capacity and energy that allows the society to grow. But then the society finds itself addicted to its tools. As the society picks the low hanging fruit, upgrades to technical infrastructure like pipelines and tankers are needed to be able to continue to maintain the same amount of supply.
What will end up happening inevitably as Tainter points out, is that society gets an S-curve happening at the level of innovation. At a certain point, it takes more energy per unit innovation. As society burns through the low hanging fruit, it end up getting this increasingly fragile relationship between the way that it met its needs and its relationship with the resources that happen to be in the ground. This then generally leads to a collapse.
On a grander scale, our system that is optimised to continue growing its complicatedness in order to pursue its aim of reducing everything that is complex into something that is simple. Our civilization is a kind of paperclip maximiser. An example is the focus on GDP growth at the expense of other variables. By optimizing certain variables, we might be missing the impact on other things, like the environment, that are harder to quantify. This reductionism leads to externalities.
Our system fragile
As we move up this technological curve, any particular perturbations that can have larger cascade effects. Our system is currently not set up to have the resilience to deal with these issues. Our system has become so complex and everyone is a specialist that a breakdown could be catastrophic.
150 years ago, shutting down the power grid wouldn’t have much impact. However, because we are so reliant on the system, any capacity to shut down the power grid could be catastrophic. Because things are centralized and connected, there are a number of different ways to shut down the power grid like an EMP, cyber warfare or even a distributed drone swarm.
Furthermore, experts predict that a Carrington flare, a solar geomagnetic storm, would cause widespread electrical disruption, blackouts and damage to the electrical grid. The solar storm of 2012 missed Earth’s orbit by 9 days.
Nature disasters could also compound this issue. An example is the 2010 eruptions of Iceland volcano. Although in a remote location and relatively small for volcanic eruptions, air traffic was disrupted by the ash plumes for an entire week. Overall, 10 million travellers were affected. If the flights were disrupted for more weeks, it could have affected global supply chains.
There is a war on sensemaking
Finally, a big problem is the war on sensemaking. Our information ecology is broken, which makes it harder to understand what is happening and make the right choices. Everyone has vested interests for sharing information, that it is hard to know who to trust.
For example, marketing and sales are rarely telling the truth and doing what is best for the customer. There is an incentive to manufacture artificial demand because one group wants to maximize lifetime value of a customer, essentially selling things that people don’t really need. They are essentially benefiting themselves at the expense of the greater whole.
Furthermore, companies have teams working on hacking our attention by showing supernormal stimuli. Our economic incentives leads to more sensational and fake news to get clicked on and shared. It also pushes platforms to create filter bubbles that confirm their own views and lead to strong ideologies.
Finally, information is used as a competitive advantage. We protect it using intellectual property. With rivalrous dynamics, we are incentivized to hide and misinform others to get a competitive advantage.
All these factors make it hard to do proper sensemaking. The sensemaking crisis is characterised by the fact that our ability to trust any mediated communication is rapidly approaching zero.
The need for a phase shift/evolutionary transition
As Daniel Schmactenbeger said, "if we are gaining the power of gods, then without the love and wisdom of gods, we self-destruct".
When shift is getting exponentially better and exponentially worse at the same time, neither of those are actually happening. It shows that things are destabilising. So, we will either get the emergence up into a higher degree of order, or an entropic drop down into a lower degree of order. That’s the precipice we’re on.
There is hope
The challenges we face are solvable. For the first time in history we have the technological infrastructure and capability to make the changes necessary to create a world that works not just for human life, but for all life now and in the future. Our problems are not the result of unavoidable human nature, but are the result of systems that are changeable.
If there’s one creature that is built to address that sort of problem, it is us. The human niche is niche switching; we can figure what to do in new situations. This is what we do better than any other creature that has ever existed on earth. Collectively, we have figured out what to do when the wisdom of ancestors have run out, and will need to do this again to tackle these problems.
Enter Game B
What is Game B?
"Game B is notoriously difficult to think and talk about for the very good reason that if you were using the conceptual structures that came out of Game A to do so, you may very well be poisoning the well."
- Jordan Hall
Defining Game B precisely would suffer from the reductionist Game A tendencies. One of the ways to work in navigating this problem is to do a parallax perspective, where are you looking at something from multiple angles. Here are some different constructions that point to Game B:
- Game B is the flag on the hill for an omni-win civilisation that maximizes human flourishing
- Game B is the environment that maximizes collective intelligence, collaboration, and increasing omni-consideration.
- Game B is building or developing capacity to navigate complexity without resorting to complicated systems
- Game B is establishing coherence within complex systems
- Game B is a meta-protocol for hyper-collaboration
- Game B is the infinite game where the purpose is to continue playing. Game A is the finite game where the purpose is to win
- Game B is the theoretically optimal conditions for creative collaboration and thus maximal innovation
- Game B must orient it’s primary innovation capacity towards cultivating individual and collective sovereignty and an awareness of how choices actually show up in the world more than the rate at which it increases individual and collective power
- Game B is a new mode of societal, economic, and/or political organization that leverages people's authentic, long-term interests towards a healthier, more cooperative society and increased well-being. A Game B system is any cooperative, mutually-beneficial system that can outcompete exploitative, adversarial systems through manifest appeal and willful, voluntary participation.
It may also be helpful to define Game B in terms of what it is not. As Ariadnae writes:
- It's not an ideology nor a political stance; much different than Right and Left, which both strive to find ways for a fairer, more productive and sustainable Game A, Game B is an attempt at freeing myself from any ideology, and losing bias filters in an attempt at seeing the world for what it really is
- It's not an Apocalyptic view of the world; actually, the world in all its manifestations of cultures and extremes is so plastic, resilient and adaptable
- It's not an esoteric, psychedelic, cult-like movement trying to blow-up the classical success-based hierarchies of the Western world; rather it's a sober attempt at analyzing human spirituality, psychology and sociology in order to understand what drives us as individuals and collectives and an attempt at leveraging old traditions and new discoveries to build everlasting ever longer bridges across people with a myriad of backgrounds, cultures, languages, and religions and take the best of each in order to make sense of humanity as such
- It's not a utopia in the making, nor a movement aimed at replacing markets and money with some obscure technology-driven new social order; rather it's an attempt at understanding how money, technology, and political systems shape the world order as it is and discovering ways to advance societies via more creative, cooperative and sustainable low-resolution forms of collaboration, to support the success of healthy markets and societies
- It's not a secret brotherhood of people armed with "bullshit baffles brains" jargon talking in such complicated words that laymen would find hard to understand; it's every one of us who is trying to make sense of the world using precise and accurate speech, evidence-based facts and scientific inquiry methods; we strive to make complex theories simple enough for the individual understanding but without simplifying things to the point they would lose their essence and value of truth
- It's not a counter-reaction to the great thinkers of yesterday and today; it's an attempt at distillating and integrating the Truth in all that the classical and contemporary thinkers have to say, in order to create a round and comprehensible story of who we are and where we are heading as individuals and collectives
Game B players are already everywhere, and Game B is already emerging. #gameb is merely a means to make the organism self-aware, to show its players that they are already in community.
How does Game B emerge and evolve?
As Jordan Hall mentions, there are at least three kinds of effort. All three are parallel - doing very different things but at the same time.
- Amelioration efforts - These are the things that are focused on minimizing the harm that Game A does as it winds down. From seed banks to cleaning plastic out of the oceans to preventing catastrophic war.
- Transition efforts (Transition B) - prototyping new models, building very likely necessary infrastructure, taking well considered and intentionally evolving swings at chunks of the larger problem (e.g. decentralized education models, permaculture at different levels of scale, much but not all of "green tech", etc.)
- Game B Proper (Game B) - Consciously and carefully co-creating an Emergent and scalable new game.
It is important to note that there are no plans or strategizing to get to Game B because it is hard to plan for emergence. As a collective, each of us discern with your full self what the best “next action” and what is the “adjacent possible”, and move in that direction.
Through analogy, Game B players gather together to feel their way up each hill with their toes, sensing for the loamy untrodden ground beneath them, slowly inching forward, listening for signals from one another, adjusting at each step to orient themselves toward the flag that is barely visible through the gloaming.
So, to play Game B is to eschew reductionism, prescription and strategizing and to instead embrace complexity, uncertainty and emergence. It is to adopt epistemic humility and deep listening as a default mode of engagement to notice what is emerging that may be omni-win. It is to cultivate a different form of knowing that leans less heavily on the propositional forms of the past, and more on the on relational coherence, intersubjectivity and participation to support that which encourages the universal flourishing of life.
How would Game B beat Game A?
"The omni-win-win system actually outcompetes the win-lose system, while obsoleting win-lose dynamics itself.”
- Daniel Schmachtenberger
If we are able to create a social technology to hypercoordinate with others, then Game B would better at innovation than Game A. Then the only way to beat it would be to coordinate even better which is in and of itself a more Game B solution.
Origins of Game B
As Jordan Hall describes on Facebook, a series of meetings happened in mid 2012-2013. On the third meeting, the group pondered on the concept of Game B. The name of Game B and proposed it on their fourth meeting. By their fifth meeting, there were about thirty people in the group and the first formalization was proposed. This group included Jordan Hall, Eric Weinsten, Seb Pacquet and Venessa Miemis (now Hall).
Jim Rutt mentions that Game B emerge in 2013 as an evolution from a failed attempt to launch the Emancipation Party. Ultimately this kicked off "Deep Code" where Jim assigned Jordan Hall the task of "going as deep as necessary" to establish the basis of any possible "game~b".
Game B as an operating group fell apart over two directions: personal change vs institutional change. The group went into “spore mode” and disbanded and were to use the concepts in ways that they saw fit. Game B got reintroduced by Bret Weinstein on the Joe Rogan Experience in Dec 2017.
What are some design criteria of Game B?
Although Game B does not have an exact vision, there are design criteria that it may solve to tackle the problems that we face.
Daniel Schmachtenberger started The Emergence Project to develop a set of necessary and sufficient design criteria for developing comprehensive solutions. Their vision is of an omni-considerate, integrally developed, effectively and spontaneously self-governing global civilization.
An omni-consider civilization is one where the incentive of any actor (individual or group), must be rigorously aligned with the well-being of all other agents in the system and of the commons writ large.
The emergence model
Through the Emergence Project, a model was created. The model is derived from Ken Wilber's Integral Theory and draws upon the work of leading contemporary thinkers to:
- Include a comprehensive taxonomy of necessary and sufficient “metastructures” that support human civilization
- Provide a criteria for evaluating the performance of existing structures
- Account for interactions between structures
- Prioritize the highest level initiatives that lead to omni-considerate outcomes
The four quadrants represent the memetic structure (I = individual subjective) , physiologic structure (IT = individual objective), social structure (WE = collective intersubjective) and infrastructure (ITS = collective interobjective)
- Memetic Structure:
- Human Values, Beliefs, Meaning, Orienting Stories and Narratives, Worldview, Identity, Definition of success.
- Physiologic Structure:
- Behavioral Influencers -- Nutrition, Neurochemistry / Neurobiology, Endocrinology, Epigenetics, Toxicity, Nutrition
- Social Structure:
- Economics, governance, law
- Infrastructure:
- Modes of production: Energy, Agriculture, Transportation, Energy Generation, Water, Building Technology, Waste Management
All factors that condition human behavior live in these quadrants. Each of the quadrants is fundamental and irreducible with respect to the others, so these categories are both necessary and sufficient for inventorying all sources of human conditioning.
Metastructures in each of the four quadrants co-evolve and co-influence each other in complex ways, and must all be factored together to effectively evolve society. Most social philosophies have emphasized one of these areas as fundamental, leading to projects focused in that area to the exclusion of the others. Such a reductionist orientation simply is inadequate for systems as complex, and interconnected as human society and the biosphere.
Below are examples of metastructure shifts, by category. Note that these do not include all design criteria.
Memetic Structure
From | To |
Separate parts | Interconnected Wholes |
False Dichotomies | Meaningfully Reconciled Paradox |
Competition | Collaboration |
Random Universe | Emergent Universe |
Unifying Through Homogeny | Unifying Across Diversity |
Self Centered or Self Sacrificing | Omni-considerate |
Physiological structure
OPTIMIZING SYSTEM BEHAVIOR IN THE CURRENT CODE
Reduced Toxicity
Addressed Nutrient Deficiency
Addressed Pathogens
Addressed Structural Imbalances
EVOLVING THE CODE ITSELF
Epigenetic Upgrades
Genetic Upgrades
Transhumanism (Biological and Transbiological)
Social structure - Economics
From | To |
Win/ lose structures | Win-Win structures |
Growth | Post Growth, Evolving Homeostasis |
Separate Ownership | Resource Optimizing Commonwealth |
Transactional Accounting | Systemic Accounting |
Possession | Access |
Extrinsic Motive | Intrinsic Motive |
Competition as driver | Conscious evolution as attractor |
Profit/ Resource Extraction | Resource Circulation |
Extraction & Production Cost Accounting | Life Cycle Cost Accounting |
Scarcity Valuation | Utility Valuation |
Competing Metrics | Comensurated Metrics |
Social structure - Governance
From | To |
Imposed (Command & Control) | Emergent Self-Governance) |
Person Mediated | Process Mediated |
Conflicting Values | Inclusive Holarchy of Values |
Imperialistic vs. Anarchistic | Consciously Self Regulating |
Implicit Outcomes | Explicit Outcomes |
Symptomatic | Cause (solutions) |
Uncoordinated Partial Solutions | Systems Solutions |
Opinion based | Data based |
Arbitrary purview | Governance at the level of effect law |
Punitive | Protective and rehabilitating |
Interventionary | Preventative |
Infrastructure
From | To |
Centralized | Decentralized & Distributed |
Linear Materials Economy | Closed Loop (materials economy) |
Depleting & Extractionary | Regenerative |
Fixed | Modular & Adaptive |
Goods | Services |
Possession & Ownership | Access & Sharing structures |
Nature & Technology Divide | Biomimicry |
Commodity Based | Technology Based |
Labor Work Force | Automation |
What are some design criteria of Transition B?
Similarly, there are also design criteria for Transition B system. Daniel Schmachtenberger wrote about some design criteria for the transitional system here.
The Transition B system must be able to interface with the current economic system. Thus it must be able to move resources from the current system into the transitional system. It must:
- Lead to a new attractive basin that moves a critical mass of resources to the new system, that past a tipping point becomes auto-poetic. Auto-poetic means that the system is capable of growing and maintain itself.
- Requires offering enough increased advantage over the current system, with enough ease of use, to reach the tipping point towards auto-catalysis.
- Avoid/ be resilient to attack from the current economic system including any of its associated systems (media, law, military, etc). It also needs to be resilient to attack from and able to outcompete any other emerging autopoietic systems that don’t vector towards post-transition viability.
- Scale as fast as the current system might collapse.
- Move economic capacity to choice making agents/processes with higher omni-consideration.
The Transition B system also must serve as a bridge to the post-transition Game B system. It must:
- Not be capturable.
- Be oriented to evolve into the post-transitional system; must not be oriented to maintain its transitional structure.
- Not increase the probability of any near term catastrophic risk scenarios or tipping points towards long term risks.
- Vector towards the post-transitional system as quickly as viable; must allocate the resources to building the post-transitional economic infrastructure.
How can you move forward?
There have been many suggested ways for you to move forward without understanding of your specific context. Jordan Hall provide these meta-principles:
- Understand the truth
- Develop your sovereignty
- Develop the right relationship
- Develop coherence with others
Below are some suggestions by Jordan Hall that have been roughly edited.
Recognize that you need to change first
It starts with you. You can only control yourself. In order to create the change that you wish to see, you need to shift yourself first. In some ways, you are a microcosm of the larger whole and in solving problems in yourself, you are learning how to do so for the whole as well.
Move slowly
Recognize that the journey to Game B will take time. It likely won’t be realized for 2 - 3 generations from now. Compared to our current environment, which places importance on speed, Game B moves at a much slower pace because that is the pace of meaningfulness. As Jordan Hall says, “Slow is smooth, and smooth is fast. So become smooth first.”
Have infinite humility
Jordan Hall recommends infinite humility. This means that we all probably don't know much. Recognize that everything that you learned that got you to who you are today may not be useful in moving forward. The models, the frameworks, the habits, the strategies, and the relationships that got you to the top of your own niche in Game A are likely not going to be useful as we move to Game B. If you have been optimizing in any sense, you probably have ignored other important stuff along the way while you are engaging in hillclimb. That means you are not whole. Starting from a beginner’s mindset and unlearning will take time.
Heal
We have significantly destroyed the capacities of human beings at industrial scale with our current systems (e.g. educational, economic, etc). Remediating that damage and bringing people back to the basic capacity of being mature adults, who can use the whole of their mind to be thinking (and not simulated thinking), and use the whole of their body and emotional intelligence, is really quite hard.
The healing piece is a massive issue. Healing is going to be both an individual journey - because each individual has their own history - but also a collective one (on many different scales) because lots of harm and injustice has been done to different kind of groups and cultures.
Get rid of the malware
Using a different analogy, we each are filled with malware from growing up. We have to figure out how to actually reboot our individual system. It is a non trivial problem. Fortunately, it's a solvable problem, it can be done. Or at least, it seems reasonably solvable.
Learn to use your full self
The more you're able to use your most full self, the more you're able to become whole. As anybody who's ever done anything meaningful knows, it is important to learn how to actually use the whole self, the whole of your body and mind. Tune your instrument that is yourself. One of the many ways that exist, could be meditation. Jordan Hall has noticed that the answer to the question of what to do is only answerable by that instrument.
Embody knowledge
Be rather than think - or: merge being, sensing and feeling with thinking. Even though many know Game B through talking intellectually, at the end of the day, it’s our ways of knowing and acting will need real and deep embodiment. As John Vervaeke says, there is a difference between intellectual propositional knowing and embodied participatory knowing.
There are things that you absorb into yourself, and you are increasing your capacity as that happens. At the basic level, you are not thinking about it, and any degree to which you're thinking about it is getting in the way. An example is that it is hard to learn how to play golf by verbal instructions. Your whole body needs to have the feeling of golfing to learn.
We should continue to explore the deeply forgotten foundations of our participatory knowing, and really grappling with all levels, from participatory, through perceptual, to perspectival, and to propositional knowing.
Figure your vocation
As Jordan Hall says, “First, stop carrying that which is not yours to carry. I find that lots and lots of people, and probably for quite good reasons, endeavor to do more than that is theirs to do. This is largely because they can't find other people to carry those parts and often times, they need a whole bunch to get anything done. Well, become more and more skillful at not doing that. Be careful to carry less and less of what is not yours to do.
Second, really fully carry that which is yours to do. Sense the parameters and the shape and the characteristics of why you're here. What is your unique capacity in the context of the larger story? Become masterful at it, like a 100% commitment. I mean, 100%, no compromise. Doing whatever is necessary in yourself, to make yourself capable of fully bringing into the world, that aspect of the bigger story, that is your responsibility.“
Thor's hammer is a good metaphor. Thor's hammer is infinitely heavy, unless it's exactly yours to carry. But if you are worthy, then it's infinitely light. In doing so, more bandwidth and more energy will flow through the system. On the other side, stop carrying something and trying to do something that is not very, very deeply specifically yours to do. Otherwise, it becomes infinitely heavy and you'll become Atlas holding the Earth. It will just flatten you.
When you find your calling, you learn to say no to things that are not in alignment with your calling. This will enable you to say yes to supporting people who are very close to you. Then you will find yourself in what I would call a de facto collaboration. If you were working on your calling, even if I've never met you and never shall, and I'm working on mine, then we are nonetheless collaborating on the same shared future.
Your calling is similar to the Japanese term ‘ikigai’. You need to discover the overlap between your unique singular capacities, the moment that which is really most needful now, and your joy, your bliss, which most fully feeds your growing soul.
Understand that optimization is Game A
A metric to optimize around a finite set of metrics is ultimate complicated. In order to optimize, you artificially constrain the space of possibility. In fact, even the notion of optimization itself is something of a problem. We don't get to the kinds of solutions that we need by optimizing for any single metric, or even any finite set of metrics. Game B will happen in the domain of complexity - no optimalisation there!
Move to non-rivalry
The things that are necessary for humans to achieve fulfillment turned out to be the things that maximize our generation of non-rivalrous phenomena. Non-rivalrous phenomena have an exponential growth rate; each time we get a level up, we dramatically increase our capacity. So we get this nice feedback loop that if we shift into increasingly non-rivalrous modes, then we get increasing escape velocity; we are constantly rewarded for getting better and better at achieving fulfilment.
Make less bad people and provide universal love
It’s not really about making better people, it’s about making less shitty people. If we want to stop people from doing catastrophic damage, it is important that they feel loved and are connected to others.
Be in the right relationship with those around you
Take care of your family and take care of your community. Also be in right relationship with nature. Learn how to connect with and remember the benefit of the natural environment.
So, weave the fabric of culture at the level of direct relationality and the level of getting better and better at being a good friend and being a good partner and being a good parent or being a good child.
Discernment in this particular sense is the ability to identify what is the relationship that is possible with another, so we can find out what is the highest possibility of the relationship. The right relationship is the practice of stepping into that and then enabling a future frontiers of that relationship. And then again, discerning what is available, and continue to go into that.
Have coherence with others
Coherence means that my relationship with you is a relationship where I am endeavoring to support your becoming more sovereign. And you endeavour to support my becoming more sovereign. The relationship, by directionality, begins to have more and more depth and richness to it. We begin to have agreements and begin to have communication protocols, we begin to have a history and a connectedness that allows us to do deeper and harder things with each other. At the same time, it allows us to get deeper into our own selves.
Find the truth
Find the truth because all perspectives on reality are going to be a reduction of reality. You are going to have blind spots that are unavoidable. The only way you start to address them is having more perspectives.
So how do we have more perspectives?
By having conversations. We think in groups in conversation with each other. Really learn the art of coming together in groups that can have these conversations.
With who?
By talking to people around you. No matter what the origin source is, if it is broadcast, it is broadly untrustworthy, which means that you can listen to it, but you're gonna have to do a lot of work to make any sense out of it at all. So in order for you to find out the truth, talk to the people around you because the best source of information is people you know. In other words, rather than trying to get information from new sources of people you don't know, you better off getting those information from people you know because you don't know the filter that that information is coming through. We make sense of things in the community of people that we know and trust. So to speak, it gives you a lot more information and not to mention, a lot more sense making capacity than receiving information from any anonymous source. So the kinds of things that we naturally do like hanging out with our friends and we have conversations, we should do that a lot more, and we do it a lot more deliberately. And then we do it with the kind of intention that is the specific intention of seeking insight and with greater depth and a greater dimensionality of perception than would otherwise be possible.
Also, seek out the right people that have divergent views. Learning how to have productive conversations with others with different worldviews is a skill.
How?
Here are a couple of tips:
- Share what is yours to share
- Follow Rule Omega - amplify the signal in what people are saying. After a few turns of speaking, the signal will be clearer.
Create a Game B environment
One of the primary things that a person will notice when they’re participating in this Game B environment is a radical upgrade and the meaningfulness of their lived experience. Their life will in fact be and feel more meaningful.
As Jordan Hall describes, a Game B environment probably is going to be around 1,500 to 3,000 people. It’s somewhere in the range of a village to small town but it has all of it. It has kids being born, it has kids going to school, it has old people, it has people dying, it has food production, it has energy. For the moment, it will still need to interface with Game A, if only in an asymmetrical way. For example, goods are sold into Game A.
Think of it as a Google village, where the capacity to be able to generate high-value products into Game A is asymmetrically high, and so that produces the output that generates the influx of resources necessary to be able to get the things you can’t get out of the community. The community is constantly looking for ways to use its capacities and its relationship with the larger world to become increasingly local and increasingly autonomous.
Develop the meta principles or selecting constraints
Forrest Landry on designing Game B: “So thinking about design questions in a way that neither top down, which is maybe accurate, but not precise enough, or bottom up, which may be really, really precise, but takes a long time. We find ourselves in a situation where we need to come up with design capabilities, design characteristics that have the rapidity of top down, but the effectiveness of bottom up and so in a sense, our exercise is essentially to develop a set of tools to develop a set of conversations of intelligence building apparatus that allows us to deal with complexity in a profoundly clear way.”
Develop the meta-psychotechnologies
Psychotechnologies may also play a role in opening up the cognitive spaces for new forms of perception and knowledge to emerge.
We should find the meta design for psycho-technologies, to actually then come back down to the level of doing the psycho-technologies of Game B, which would be in principle now at this point distinct from the psycho-technologies of Game A.
We can endeavor to curate the psychotechnologies that are the most effective, and then recursively using them to bring groups together using these techniques to then give insight into what might be a deeper and better way of doing it.